
S H O R T  C O M M U N I C A T I O N S  2037 

Acta Cryst. (1971). B27, 2037 

Automation of the non-centrosymmetric symbolic addition. I. Fast determination of the unknown symbols. 
By H. SCHENK, Laboratory for Crystallography, University of Amsterdam, Nieuwe Prinsengracht 126, Amsterdam, The 
Netherlands 

(Received 3 May 1971) 

A method is described for the determination of numerical values of the symbols employed in the non- 
centrosymmetric symbolic addition. The method is fast and applicable to all space groups. An analoguous 
procedure can be used for centrosymmetric space groups. 

Introduction 

Recently direct methods based on the E2 formula have been 
employed successfully in many non-centrosymmetric struc- 
ture determinations, mostly of space groups P2~ and 
P2~2121. Roughly the methods used can be divided into 
two groups, one working with symbolic phases (Karle & 
Karle, 1966) and the other with numerical phases, which 
are refined by the tangent formula (Germain & Woolfson, 
1968; Germain, Main & Woolfson, 1970; Hall, 1970). 

The methods from the second group do not permit the 
use of more than approximately 100 different starting sets 
of phases, in view of the computational costs. Kaufman & 
Leiserowitz (1970), for instance use some 800 starting sets 
but this approach consumes more computer time than our 
quarterly budget. 

The first group of methods offers more elegant oppor- 
tunities for automation. In this approach a readily obtain- 
able figure of merit for the correctness of a set of trial values 
for the symbols is essential. 

This paper deals with a method for symbol screening, 
which is very fast and applicable to all space groups. 

Background 

The method to be presented here enters the symbolic 
addition procedure (Karle & Karle, 1966) at the moment a 
basic set of reflexions has received symbolic phases of the 
form ~on=au+~aH,jxj (the xj are the symbols, an is a 

J 
constant, aH,~ are integers) which have been obtained 
using strict acceptance criteria. All other reflexions either 
fall short of the acceptance criteria or have several differing 
phase indications fpn. 

In the tangent refinements, Germain & Woolfson (1968) 
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Fig. 1. The composition of different phase indications t.ou,+ 
q~n-n" with amplitudes Ku'H-n'=2a3az-3/21EHEu'EH-H'I 
to give a resultant an with phase tpn. 

are handling a figure of merit for the correctness of a set of 
phases ~0u 

C =  ~oc~= maximum (1) 
H 

where an = {[~Kwu-n" cos (0w + ~0u-w)] 2 
H" 

+ [ ~ K w n - u  sin (On' + ~on--')]2} 1/2 
H" 

(see Fig. 1). 
This figure of merit may also be applied to the Y~2 list, 

consisting of all reflexions with IEI > 1-0 or 1-2 and calcu- 
lated on the basis of the symbolically phased reflexions. 
Then C can be calculated as a function of the numerical 
values for the symbols x~. . .x , , ,  but this is a rather time- 
consuming calculation. 

In centrosymmetric symbolic addition the criterion: 

~. ~ IEnEn-u,EH'I{1 - S n  x Su'  x Sn-u '}  = minimum 
H H '  

is used (Schenk, 1969). This criterion gives the deviation 
from complete internal consistency and in fact we found in 
80% of our structure determinations by this method that 
the lowest criterion corresponded to the correct solution. 
In an additional 10% the second lowest criterion gave the 
correct solution. 

In analogy we proposed the criterion 

~. {(~ Kn'u-n') - an} = minimum (2) 
H H '  

(Schenk, 1969) as indicative for correct solutions in non- 
centrosymmetric symbolic additions. However, (1) and (2) 
are equally time consuming. 

Closely related to (2) is the figure of merit: 

~. ~ KH, u-m + Knju-ni-IRmjl  = minimum (3) 
H i j 

where I Rn ,Jl = (Kui t4 -u 2 + K~ 0 U-l~ 

+ 2KHt H-Hi KHiH-t 0 COS d~omj) 1/2 

and Acpmj = tpuj + ~ou-ui - ~onj - ~ou-nj (see Fig. 2). 

In fact if the number of triplets for each H does not exceed 
2 formulae (3) and (2) are identical. Again no gain of 
computing time is achieved. 

The following criterion enables a fast screening: 

Q= ~ ~ ~ (K~,in-ui + Kntu-ui)Z--IRmJl 2=minimum" (4) 
H i ./ 

Q can be rewritten as 

Q= E E E Ku, u-u, Kn~n-ut ( 1 - c o s  Acpmj). (5) 
H i j 

Many of the terms in this threefold summation have iden- 
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tical A~0mj and may be taken together by summing their 
Km H-Hi KI-ZjH-H i's. This leads to: 

Q = ~. wz (1 - cos A~0z) = minimum. (6) 
l 

Since Atpz are expressions in xj the figure of merit Q is a 
function of the xj. In the summation some w~ are relatively 
very weak and can be neglected. If one w~ is dominating, 
the correcponding A~0z is made equal to 0(mod 2re). This 
may reduce the number of  trial sets of xj, for which Q has 
to be calculated. 

Programs 

Two computer programs were written in ALGOL 60 for 
the X8-Electrologica computer (2-5 microsecond). The 
first program generates the A~0~ and their weights w~ from 
a ~z list based on the group of symbolically signed re- 
flexions. The second program calculates Q as a function of 
the symbolic phases x ~ . . . x . .  

About the computer time involved it can be mentioned 
that in the case of the sulphur steroid (see later) the present 
versmns of the programs consume 2 minutes for reducing 
1500 triplet interactions into approximately 100 A~0t's and 
2 minutes for the calculation of (2 for 500 sets of trial 
values for x~ . . .x4 .  It is expected that these speeds can be 
improved. 

Results and discussion 

The method has been applied to two crystal structure 
determinations: the photolysis product of Karle, Karle & 
Estlin (1967) and a sulphur steroid (van de Ven & Schenk, 
1971), both of space group P212121. 

I n  the first determination 3 symbols were chosen in 
order to build up a starting set of 42 symbolic phases, 
which shows no inconsistencies. In Fig. 3, section x3 = 750 
through the three-dimensional function Q(xl,x2,x3) with 
the parameters in fractions multiplied by 1000. The 
deepest minima of the complete function are all in this 
section with parameters x1=250 or 750 and x2=250 or 
750. After tangent refinement the best solution showed an 
average deviation of 25 o from the least-squares phases of 
the correct solution and in fact one of the three remaining 
minima refines to the enanthiomorph. 

The second structure required 4 symbols for the deter- 
mination of 50 symbolic phases. The section x2=750, 
x4 = 83 of its four-dimensional function Q is given in Fig. 4. 
The lowest Q value is contained in this section and occurs 
at x~=x3=O. Using this set of initial parameters tangent 
refinement yielded 470 phases. From the subsequent E map 
the structure could be found. 
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Fig. 2. The composition of two different phase indications to 
give a resultant with moduluslRmj[ = 
(KHiH-Ht 2 + KHIH-Hi 2 + 2KHiH-HiKHiH-Hi COS Atp) 1/2 
with A~0= ~OH i + ~OH-H i -  q)H i -  ~OH-H ] 

From (5) it can be seen that a reflexion H with many 
different phase indications influences the weights w~ in (6) 
more than a reflexion with a small number of different 
phase indications. To avoid this an alternative scheme is 
suggested, in which the sum ~ ~KHiH-Hi KHiH-H j is 

i j 
rescaled to ~ KHi H-Hi. By this procedure (5) becomes 

i 
KH~ u-Hi 

i o=,,E E, E, K,,,H-H, KH, H-H, E 16,,H-,-,, KH, H-H, 
i I 

x (1 - c o s  A~0m~) 
which leads to modified values wz in (6). 

An analogous searching procedure can be introduced 
in the centrosymmetric symbolic addition. Then an analysis 
of 8 symbols would take less than 1 minute of X-8 comput- 
ing time. Our present procedure (Schenk, 1969) analyses 
8 symbols in approximately 1 hour. 
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Fig. 3. Section x = 250 through the function Q(xl, x2,x3) of the 
photolysis product. The minima have been shaded, deep 
minima heavily shaded. The parameters xi are given in 
fractions multi'plied by 1000. 
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Fig. 4. Sect.ion X2=750, X 4=83 through the function 
Q(Xl,X2,X3,X4) of the sulphur steroid. The parameters are 
given in fractions multiplied by 1000. Minima in the func- 
tion have been shaded. 
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In non-centrosymmetric symbolic addition, applied to structures with centric projections, a systematic use 
of the phase indications of the centric reflexions accelerates the determination of numerical values for the 
symbols and avoids solutions which are unacceptable in projection. 

Introduction 

In the automation of non-centrosymmetric symbolic 
addition the systematic use of reflexions, the phases of 
which are restricted by symmetry operations can be very 
helpful in the determination of the values of the unknown 
symbolic phases. The most common symmetry element is a 
centre of symmetry in projections. In this paper a method 
for determining the values of unknown symbols from the 
phase indications of centric reflexions is presented. 

Method 

A basic set of symbolic phases qm = art + Y. amx, ,  where an 
l 

is a constant, am are integers and x~ are the unknown 
symbols, is obtained by the symbolic addition procedure 
(Karle & Karle, 1966) using a high-acceptance criterion. 
Then for all centric reflexions the symbolic phase indications 
are calculated. These indications have values restricted to s 
and s+  ~r, where s in monoclinic and orthorhombic space 
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Fig. 1. Section through x3=250 of the function CI(xl,x2,x3) 
of the photolysis product. The parameters are given in 
fractions multiplied by 1000. The regions with low CI 
values have been shaded, regions with very low CI values 
have been heavily shaded. 

groups equals either 0 or ½rc, depending on the space group 
and the choice of origin. Then for each phase indication 
it follows that:  

~0n, + (0n-rt' - s = 0(mod n) ( 1 ) 

in which H is a centric reflexion and H '  and H -  H '  belong 
to the basic set of symbolic phases. With these relations 
the following figure of merit can be constructed: 

CI = ~ ~ Krt.n-rt,lsin (~0u, + ~0~/-n.-s)l = minimum (2) 
H H "  

which can be rewritten to 

CI = ~ ktlsin (b, + ~ auxj)l (3) 
l ] 

where 

(On,+q~rt-n,--s=at-l,+ ~ an'JXJ+aH-n'+ ~, a , -r t , jx j -s  

--- bt + uxj 
] 

and Kn, H-rt, = kz. 
In (3) many terms (b~+ Y. auxj) are identical. By sum- 

I 
ming their kz's the number of terms in (3) can be reduced: 

CI= ~ w,,,lsin (bm+ ~ amjxj)[ . (4) 
m ] 

Usually CI is dominated by a number of large Wm'S so that 
the very small Wm may be neglected. 

From b,, + ~ amjxj=p (mod zr) it follows that:  
1 

CI(xl  . • . x , ) =  CI(xl  + zr. . . x , ) =  C l(xl + zr. . . x,, + zr) . 

Thus it is impossible to differentiate between x~=q and 
x~ = q + re. These ambiguities can be solved for instance by 
calculating the Q value, which is based on all reflexions 
(Schenk, 1971), for each of these possibilities. 

Two other figures of merit suggest themselves for 
screening the trial sets x~ in centrosymmetric projections: 

C I I =  ~ w,, {1-cos 2(bin+ ~ arnJXJ)} (5) 
m / 

and 
C11I= ~ Wml(bm+ ~ amJXJ)restrl. (6) 

m I 

In (6) the restriction is -½zr < (bin + ~ amJXJ)restr < ½Zr. 
/ 


